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conditions. These conditions, which represent additional
time-dependent partial differential equations, are ex-One of the great challenges in computational physics is the predic-

tion of flow associated noise, where the quantities of interest, tremely important for successful aeroacoustic simulations.
namely the sound waves can be at high frequencies and are usually Thus computational techniques are challenged by the com-
orders of magnitude smaller in magnitude than the mean quantities. plexity of the physics, and the computational power is
In order to numerically resolve such small scales governed by the

challenged by the required fine grids and large number offluid dynamics equations, high resolution schemes are required.
computations.Thus solutions of flow noise problems are computationally inten-

sive. An efficient, hybrid, data parallel computational aeroacoustics Parallel computers offer high speeds and massive
algorithm has been developed for the prediction of noise radiation amounts of memory, which make them attractive for
and scattering from three-dimensional geometries. The algorithm computational aeroacoustic problems, where one has to
solves the Euler/Navier–Stokes equations in the interior and nonre-

solve different sets of time dependent partial differentialflecting boundary conditions on the outer boundaries. A moving
equations; radiation boundary conditions on the inflowsurface Kirchhoff method is coupled to the flow solver for far-field

predictions. The algorithm uses standard time and spatial discretiza- boundaries, outflow boundary conditions on the outflow
tion techniques but utilizes several new optimization strategies that boundaries [7, 8], and the Euler/Navier–Stokes equations
are highly suitable for single zone solutions on data parallel proces- in the interior. Efficient handling of the outer boundaries is
sors. One strategy, for example, enables simultaneous residual eval-

a very difficult task when single zone solutions are per-uations of the interior and far-field nonreflecting boundary condi-
formed in the data parallel mode on computers such as thetions equations, reducing the computational effort spent on them

by approximately 60% CPU time savings. The algorithms for the flow Connection Machine-5 (CM-5). In the data parallel mode
solver and the Kirchhoff method and their coupling are described in one solves for the interior points and the outer boundary
this paper, and results for some example radiation and scattering points in a sequential manner. This, however, means at leastproblems are presented. Q 1996 Academic Press, Inc.

twice as much CPU time in differentiating the fluxes of the
governing equations. In addition, floating point operations
are relatively inexpensive, while communication among the1. INTRODUCTION
processors can be quite time consuming.

Communication cost is more pronounced for high orderThe prediction of flow associated noise is one of the
great challenges in computational physics. Two examples accurate schemes because they necessitate relatively large

stencils. One could cut down the communication time byof such problems are jet noise [1–3] and turbofan noise
[4–6]. Turbulence and large structure instability waves are a factor of (N 2 1)/N through a selection process of the

appropriate variables to be differentiated depending uponoften responsible for the production of noise in a jet, while
rotor–stator interactions are responsible for most of the the location on the mesh, where N is the number of the

different sets of governing equations. This new methodfan noise. The physics and the noise generation mecha-
nisms may vary greatly from one problem to another, but utilizes the MERGE statement that the programming lan-

guages CM Fortran [9], Fortran 90, and high performancethe far-field predictions all involve propagating waves nu-
merically over long distances and long time periods. Quan- Fortran (HPF) [10] facilitate. This command basically com-

bines the elements of two different argument arrays (arraystities of interest may be at high frequencies and are usually
orders of magnitude smaller than the mean quantities. The of the quantities to be differentiated in this paper) into a

new array under a given logical masking array.solution of the problems involving such small scales re-
quires high order accurate numerical algorithms, which This paper describes a hybrid, data parallel computa-

tional aeroacoustics algorithm that has been developed tohave relatively good dissipation and dispersion characteris-
tics. Due to computational cost limitations, calculations are solve noise radiation and scattering from three dimensional

geometries. The algorithm solves the 3D Navier–Stokes/carried out in finite domains with nonreflecting boundary
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Euler equations, together with time-dependent nonre- One can show that in the absence of vorticity the per-
turbed velocity components satisfy the convective waveflecting boundary conditions using a spatially and tempo-

rally fourth-order accurate finite difference, Runge–Kutta equation, as well as the density and pressure perturbations,
and, therefore, in the current numerical scheme the B1(R-K) time integration scheme. The governing equations

and nonreflecting boundary conditions are formulated in operator is applied to all the primitive perturbation flow
quantities on the subsonic inflow boundaries. This is ex-either the Cartesian or cylindrical coordinates with a

switching parameter and then transformed into a 3D body- actly equivalent to the radiation boundary conditions of
Tam and Webb [8].fitted curvilinear coordinate system. Formulations in cylin-

drical coordinates allow proper treatment of the grid singu- At a subsonic outflow boundary, the characteristics that
are out-going are associated with acoustic waves, entropylarity in some problems, such as engine inlet flow and

acoustics. Unlike the conventional methods [11], central waves, and vorticity waves. Therefore, at such boundaries
the B1 operator is applied only to the pressure perturba-differencing is used across the centerline of an inlet.

The flow solver is coupled to a far-field acoustics extra- tion, while the other perturbed variables are obtained by
solving the linearized Euler equations, following Tam andpolation code based on the moving surface Kirchhoff for-

mula of Farassat and Myers [12]. The Kirchhoff method Webb [8].
In general the interior governing equations and the far-is a surface integral method that enables one to limit the

size of the computational fluid dynamics (CFD) mesh so field governing equations with a choice of the Cartesian
or cylindrical coordinate system with the parameter m arethat the accumulation of numerical errors (dissipation and

dispersion) can be prevented and more importantly the all given by
far-field noise can be obtained with minimal computa-
tional resources. Q
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5 0, (1)Including a simultaneous residual evaluation procedure,
several other new optimization techniques are utilized in
the computer code. In the following sections, the numerical where Q is the vector of dependent variables and E, F,
algorithm for the flow solver, the optimization strategies, and G are the vectors which are functions of Q (flux vector
and the coupling of the flow solver with the Kirchhoff components for interior points) in the x1, x2 , and x3 coordi-
method are described. Then some example results for both nate directions, respectively. In the above equation the
steady and time accurate calculations are presented, and parameter m 5 0 for the Cartesian coordinate system (x1,
finally some conclusions are drawn. x2 , x3 ) 5 (x, y, z), m 5 1 for the cylindrical coordinate

system (x1, x2 , x3 ) 5 (x, r, u), and the vectors SB and SC2. NUMERICAL ALGORITHM
are the source terms which are associated with the B1

operator of the far-field governing equations and the equa-2.1. Governing Equations
tions in cylindrical coordinates, respectively. In general,

The Navier–Stokes/Euler equations are integrated in for the dependent variables Q and the functions E, F, G,
the interior of the domain, together with nonreflecting and S we write
boundary conditions on the outer boundaries of the com-
putational mesh.

hQ, E, F, G, SjThe far-field boundaries are in general composed of
inflow and outflow boundaries, which require different
conditions depending on the characteristics. At a subsonic 5 5

hQ, E, F, G, Sjint N 2 S/Euler Eqs.,

hQ, E, F, G, Sjrad Radiation BCs,

hQ, E, F, G, Sjout Outflow BCs.

(2)
inflow boundary, the only characteristic that is out-going is
associated with the acoustic waves and, therefore, radiation
boundary conditions based on the B1 operator of Bayliss
and Turkel [7] are applied, which is accurate asymptotically

The vector of state variables for the interior points is Qint 5to O(d 23 ), where d is the Prandtl–Glauert transformed
spherical distance of the boundary point from a reference [r, ru1, ru2 , ru3 , re]T and for the far-field points Qrad,out 5

[r9, u91, u92 , u93 , p9 ]T, where r is the density; u1, u2 , u3 arepoint, which is usually taken to be the approximate source
location. Bayliss and Turkel constructed a family of partial the velocity components in the x1, x2 , and x3 coordinate

directions, respectively; re is the total energy; and p is thedifferential operators Bm by using the asymptotic solution
of the convective wave equation. Tam and Webb [8] de- pressure; and a prime indicates the deviation from the

undisturbed (free stream) value of the associated quantity.rived radiation and outflow boundary conditions based on
the asymptotic solution of the linearized Euler equations. The pressure is given by the equation of state as p 5 (c 2

1)[re 2 Asr(u 2
1 1 u 2

2 1 u 2
3 )]. The terms E, F, G, S for theTheir radiation boundary condition operator and that of

Bayliss and Turkel are essentially the same. Navier–Stokes/Euler equations can be found in many stan-
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dard fluid dynamics textbooks and are not given here, but
these terms for the far-field boundary conditions are given
in the Appendix in a generalized form for arbitrary three-
dimensional problems.

Equation (1) is transformed into a general 3D body-
fitted curvilinear coordinate system, assuming

x1 5 x1(j, h, z), x2 5 x2(j, h, z), x3 5 x3(j, h, z). (3)

Then,
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FIG. 1. Schematic of a typical grid around an engine inlet.

and J is the Jacobian of the coordinate transformation and the new grid points (see Fig. 1). Thus the possibility of
is given by having singular points (zero or negative Jacobians) is

avoided. Across a singular line (e.g., the centerline in case
of an engine inlet) the domain is treated as continuous,

J 21 5 U(x1, x2 , x3 )
(j, h, z) U , (6) and formulations in cylindrical coordinates are used. This

is important in terms of being able to use central differenc-
ing with no alteration of the cell sizes near the singular

and the metric quantities are given by line, which, in time accurate calculations, are usually the
dictating factors for the time step size of the integration
scheme. However, the grid is required to be well con-
structed in the vicinity of the centerline, as well as in the
other regions. In the j, h, and z coordinates the divergence3
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. (7)
of the inverse of the Jacobian times each column vector
of the matrix in Eq. (5) should at least remain on the order
of the accuracy of the spatial discretization (ideally zero,
geometrical conservation law [13]). Even if the grid is or-Using the formulations given in cylindrical coordinates
thogonal and treated as continuous across the singular line,over those given in the Cartesian coordinates is critical, in
this requirement is not satisfied in the Cartesian system,terms of transforming the grid singularity encountered in
but it is satisfied with the metrics of this paper in cylindricalmeshes around bodies of revolution, such as the engine
coordinates. Therefore, cylindrical coordinates are used ininlet, into only source-like terms (SC above), thereby
problems involving singular lines, and excellent results areavoiding a possible violation of the geometrical conserva-
obtained, as will be seen later on.tion law during the discretization of Eq. (4).

In order to apply the solid wall boundary conditions
properly, ghost grid points are introduced inside the wall,

2.2. Grid System
such that in the mapped computational domain (j, h, z)
the wall is at an equidistant position between the wall ghostThe numerical algorithm uses cell-centered finite differ-

ences. A second grid system is constructed from the cell point and the first grid point off the wall (see, for example,
Fig. 1). Additional ghost cells along other boundaries arecenters of a given grid system, which are computed via

third-order interpolations to preserve the smoothness of also utilized, and the grid points are re-indexed to imple-
ment the optimization techniques described in Section 2.4.the original grid. The dependent variables are stored at
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2.3. Time Integration

Equation (4) is integrated using the classical 4-stage
R-K scheme. This scheme is fourth-order accurate in time
and well proven for its effectiveness in the calculation
of time dependent problems [14]. The stages of the R-K
technique are given as

Q(1) 5 Qn,

Q(2) 5 Qn 2 As J Dt[F(Q(1)) 2 D(Q(1))],

Q(3) 5 Qn 2 As J Dt[F(Q(2)) 2 D(Q(1))], (8)
FIG. 2. Simulated central difference stencils at/near a boundary.Q(4) 5 Qn 2 J Dt[F(Q(3)) 2 D(Q(1))],

Qn11 5 Qn 2 J Dt O4
s51

bs [F(Q(s)) 2 D(Q(1))],
where a (r)

i, j,k are the weights (stencil arrays) and they take
appropriate values such that the above sum in effect simu-
lates a regular 5-point stencil for fourth-order spatial accu-where the superscript n shows the time step, Dt is the time
racy. However, this approach requires more storage forincrement from one step to the next, b 5 [Ah, Ad, Ad, Ah], F is
coefficients a (r)

i, j,k due to the integer r stretching from 24the residual vector, i.e., the sum Ẽ/j 1 F̃/h 1
to 4, and consequently more communication. This ap-G̃/z 1 (SB 1 mSC)/Jx m

2 , and D is the total artificial
proach has been taken by some researchers (for example,dissipation vector corresponding to variables Q. Dissipa-
see Refs. [18, 19]). The current paper uses a new approach,tion is necessary in central difference schemes because
which is described below.they lack mechanisms to suppress high frequency spurious

Two rows of ghost cells (grid points) are introducedoscillations. In most problems it is sufficient to calculate
along all the boundaries (solid wall, far-field, etc.). Thendissipation only once and freeze its value throughout all
the first and the last real grid points in the domain arethe stages. The R-K integration is stable for Courant num-
denoted by 3 and N 2 2, respectively, where N is thebers CFL # 2Ï2 when the spatial discretization is ignored.
total number of grid points (including ghost points) in theVon Neumann stability analysis applied to the 1D advec-
particular direction (j, h, or z). The ghost grid points aretion equation indicates that the fourth-order spatial discret-
then loaded with the appropriate information (metrics andization lowers this limit to about 2.06 [15, 16].
weights once, flow state variables at every Runge–Kutta

2.4. Spatial Discretization and Parallelization stage, etc.) so that a simulated central difference stencil
can be used. For example, Fig. 2 illustrates two simulatedAlthough finite volume methods are more robust in
central difference stencils at points i 5 3 (boundary point,terms of representing the discretized version of the integral
first real cell) and i 5 4 (one cell off the boundary, secondform of the conservation laws of fluid dynamics, higher
real cell), respectively. This boundary has two imaginaryorder implementations become very expensive for three-
cells to its left, which receive information from cells i 5 6dimensional problems due to required interpolation proce-
and i 5 7 so that for cell i 5 3, cells i 5 1, 2, 3, 4, and 5dures [17]. Therefore, the spatial derivatives of Eq. (4)
establish a central difference stencil for the /j derivativeare computed using fourth-order accurate Taylor series
with weights b(r)

i53, j,k , r now extending from 22 to 2. Andderived finite differencing, which requires a 5-point stencil
similarly for cell i 5 4, cells i 5 2, 3, 4, 5, and 6 within each direction for every grid point. This stencil is central
weights b(r)

i54, j,k establish a central difference stencil. Thusin the interior and biased near the boundaries.
for a derivative Ẽ/j at any point (i, j, k), it can be writ-The differences between the stencils of the interior grid
ten thatpoints and the boundary or the near-boundary points cause

difficulties in evaluating the derivatives in parallel. One
approach to evaluate a derivative simultaneously at every Ẽ

j
U

i, j,k

5 O2
r522

b(r)
i, j,k Ẽi1r, j,k . (10)grid point on a regular computational mesh within a single

CM Fortran [9] line (so that there are no idle processors)
is to use a 9-point stencil. Then at any point (i, j, k), the Although introducing ghost cells at the boundaries may
derivative Ẽ/j can be approximated with seem to increase the number of total grid points, this in-

crease is only of O(N 2), while Eq. (9) requires four addi-
tional stencil arrays of O(N 3) for each direction, where N isẼ

j
U

i, j,k

5
1

Dj
O4

r524
a (r)

i, j,k Ẽi1r, j,k , (9)
the number of grid points in only one direction, as indicated
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Ẽc

j
U

i, j,k

5 b(22) p cshift(Ẽc,dim 5 1, shift 5 22)

1 b(21) p cshift(Ẽc,dim 5 1, shift 5 21)

1 b(20) p cshift(Ẽc,dim 5 1, shift 5 0)

1 b(11) p cshift(Ẽc,dim 5 1, shift 5 11)

1 b(12) p cshift(Ẽc,dim 5 1, shift 5 12),
FIG. 3. Computational domain and the preshifted-by-two masks.

(12)

where dim=1 signifies the j-direction, and the superscriptabove. Also, the communication cost for loading the ghost
c is used to indicate the associated variable is actually acells with the appropriate information can be justified when
composite variable of the three regions R, O, and I. Nowcompared to the unnecessary communication that is re-
if this derivative is to be evaluated for these three regionsquired by Eq. (9) for the apparent increased stencil size.
sequentially, the total number of cshifts for a singleThus using this new approach (Eq. (10)) with the ghost
variable in only one direction is 3 3 4 (shift by 0 notcells at the boundaries, a given derivative can be evaluated
counted). Considering Ẽ (or F̃, G̃) is a five-element vectorsimultaneously at every grid point in a more efficient way.
and for a 3D problem, the derivative operator is requiredIn solving an aeroacoustics problem on a data parallel
in a total of three directions, the cshifts sum up tocomputer (in SIMD mode), another difficulty, which is of
(3 3 4) 3 (5 3 3). This implies a significant amount ofreal concern here, is the parallel evaluations of the residu-
communication among the processors, which is the mostals of the interior and the far-field boundary equations.
time consuming process on the Connection Machine. How-This difficulty arises due to the fact that vector components
ever, one can combine the Ẽ’s of the three zones R, O,E, F, and G of the flux vector tensor of the interior equa-
and I to form Ẽc in such a way that, when Eq. (12) istions have different functional forms from their counter-
performed, the derivative Ẽc/j is obtained for these threeparts of the far-field inflow and outflow boundary condition
zones simultaneously. In other words we do not have anyequations (see Appendix). Thus the parallel evaluation of
idle processors; hence, they do not perform unnecessarythe derivatives of these vectors is a significant task. Here
cshifts for any grid point when evaluating the spatialwe develop a new programming strategy in CM Fortran
derivatives of Eq. 4, thus cutting down the number ofor HPF to accomplish this task. The method makes use of
cshifts by 67%. This is all achieved by using the intrinsicthe MERGE statement that these programming languages
MERGE command [9], for which the syntax is given asoffer.

Consider a computational domain that has a far-field
C 5 MERGE(A, B, mask 5 M), (13)boundary on which the radiation and outflow boundary

conditions are to be applied, and in the interior N-S equa-
where A and B are the source (argument) arrays of thetions are to be solved. A sketch of such a domain is illus-
same rank, size, and type; M is the logical masking arraytrated in Fig. 3. The computational domain has ghost cells
of the same rank and size as the source arrays, and C isalong the far-field boundaries for making the boundary
the target array, which is of the same rank, size, and typestencils central as explained above. The radiation cells are
as A and B. This intrinsic function basically selects thedenoted by R, the outflow by O, and the N-S by I. Our
elements of the target array C among the elements of thegoal here, in a data parallel code, is to evaluate each of
source arrays A and B such that where the mask M is .true.Ẽ/j, F̃/h, and G̃/z, which appear in Eq. (4), simulta-
the array A provides the elements of C, and so does theneously everywhere in the computational domain.
array B elsewhere.Now consider the derivative Ẽ/j at the grid point

Now consider the third cshift operation in Eq. (12),(i, j, k). This derivative is given by Eq. (10), or for all the
i.e., the instructionregions in an expanded form,

cshift(Ẽc, dim 5 1, shift 5 0), (14)Ẽc

j
U

i, j,k

5 (b(22)
i Ẽc

i22 1 b(21)
i Ẽc

i21 1 b(0)
i Ẽc

i

(11) which essentially gives back Ẽc, and we desire this Ẽc to
1 b(11)

i Ẽc
i11 1 b(12)

i Ẽc
i12), j,k , be Ẽint at the interior points, Ẽrad at the radiation (inflow)

boundary points, and Ẽout at the outflow boundary points.
Using embedded MERGE statements, we can writeor equivalently in HPF,
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Eq. (17), and the masks Mrad and Mint are as defined byẼc 5 MERGE(Ẽint , MERGE(Ẽrad , Ẽout , mask
(15) Eq. (16).

5 Mrad), mask 5 Mint ), Now the selection of the appropriate flux component or
the function Ẽc to be shifted by r positions can be made

where the logical masks are defined as using the MERGE statement:

Ẽc 5 MERGE(Ẽint , MERGE(Ẽrad , Ẽout , mask
(20)Mrad 5 H .true. in zone R

.false. elsewhere
J,

(16) 5 M (r)
rad), mask 5 M (r)

int ).

The same procedures apply for obtaining the derivativesMint 5 H .true. in zone I

.false. elsewhere
J .

in the other directions in parallel, with only a change of
the axis ( dim above) along which data is to be shifted.

According to Eq. (13), this procedure will give us exactly The masking arrays, including the preshifted ones, are
what we desire. determined only once and saved throughout a run to be

Now consider the other cshift operations in Eq. (12), used in the above procedures. Although this requires extra
i.e., the instruction to shift Ẽc by r positions (different from storage for these arrays, one often trades increased mem-
0). We would like to have ory usage for decreased CPU time.

2.5. Artificial Dissipation
cshift(Ẽc, dim 5 1, shift 5 r)

Central differencing algorithms usually require artificial
dissipation to suppress the high frequency numerical oscil-
lations. A blend of second and fourth or second and sixth-

5 5
[Ẽint]i1r, j,k at interior points

[Ẽrad]i1r, j,k on inflow boundaries

[Ẽout]i1r, j,k on outflow boundaries.

(17)
order Jameson [20] type artificial dissipation is used in the
current algorithm. The dissipation vector D is computed
using the interior dependent variables Qint for every grid
point, including the far-field boundary points. This is be-Some care is needed to achieve the above reduction of the
cause in a data parallel code, the same operations areright-hand side expression (which requires three cshifts)
already performed for every element of an array.to the left-hand side (which requires only one cshift)

The dissipation for the far-field boundary points is thenusing the MERGE command. After all the cshift instruc-
obtained from D(Qint) via linearization. Thus one can writetions are performed, the right-hand side terms of Eq. (12)

must all be of the same type function Ẽ, i.e., either Ẽrad ,
D(r9) 5 D(r),or Ẽout , or Ẽint , so that the weighted sum of them gives

the correct derivative for every grid point in the domain.
D(u91) 5

1
ry

[D(ru1) 2 u1y D(r)],In this case we cannot simply combine Ẽ’s of the regions
R, O, and I into Ẽc in the same manner as in Eq. (15),
and then apply the cshift to obtain Eq. (17). Doing so

D(u92) 5
1
ry

[D(ru2) 2 u2yD(r)], (21)
for every cshift operation would result in an indistin-
guishable collection of the shifted Ẽc’s on the right-hand

D(u93) 5
1
ry

[D(ru3) 2 u3yD(r)],side of Eq. (12), thus an incorrect derivative for the grid
points. We, therefore, use masking arrays that are shifted
a priori by r positions, but in the opposite direction to D(p9) 5 c 2

y D(r9),
provide the cshift with access to the right Ẽ for every
grid point across the entire computational domain. where D( ) is the dissipation flux of the respective argu-

Thus in general we define the preshifted masks for the ment, and the subscript y is associated with the free stream.
three zones as This procedure does not require a separate calculation

of the dissipation fluxes for the far-field boundary points.
M (r)

rad 5 cshift(Mrad , dim 5 1, shift 5 2r) (18)
3. FAR-FIELD PREDICTIONS BYM (r)

int 5 cshift(Mint , dim 5 1, shift 5 2r), (19)
KIRCHHOFF METHOD

The Kirchhoff methods have recently found more andwhere the superscript (r) indicates the mask is to be used
in shifting the argument Ẽc by r positions as required by more use in flow induced far-field noise predictions [21].
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The reason for this is twofold. First the numerical algo- The Kirchhoff surface is constructed out of the CFD
grid by specifying constant j, h, and/or z surfaces. Equationrithms involve dissipation and dispersion errors that can

accumulate as one keeps propagating waves all the way to (22) requires the surface parameters, such as the normal
vector and surface element area. This information is di-the observer (far-field) point, which may result in inaccu-

rate predictions. The second is the demand on computa- rectly related to the metrics given by Eq. (7). The acoustic
pressure required by Eq. (22) is obtained from the flowtional power dictated by such a direct approach is exces-

sive, and practical calculations are impossible. Here we solver, by subtracting the mean pressure from the total
pressure. Equation (22) is integrated as the solution of theavoid such problems by passing the Navier–Stokes/Euler

near-field solution to a closed Kirchhoff surface to extrapo- interior domain progresses through the R-K iterations.
In most problems the observer and the Kirchhoff surfacelate the near-field solution to the far-field observer point

assuming that the field between the two is governed by are fixed relative to each other. Also the coordinate system
is attached to the moving surface rather than the fluid. Inthe linear wave equation. This approach requires justifica-

tion of the choice of the closed Kirchhoff surface for the this case the fluid passes both the observer and the Kirch-
hoff surface at the same speed, My . Thus the Kirchhoffdesired accuracy of the far-field predictions. The surface

is chosen to include all the important physical effects on surface and the observer are seen to travel at 2My , and
the elapsed time for a signal to travel from a Kirchhoffthe acoustic waves, such as the nonlinear and nonuniform

background flow effects. surface element to the observer will always be the same
in time. This greatly simplifies the numerical coupling ofAn extensive review of the Kirchhoff methods used in

the literature is given by Lyrintzis [22]. Here the Kirchhoff the flow solver and the Kirchhoff method. Thus the emis-
sion time for a Kirchhoff surface element e is given byformula developed by Farassat and Myers [12] for arbi-

trarily moving and deforming surfaces is used and coupled
with the Navier–Stokes/Euler solver of the current numeri- te 5 t 2 re/cy , (27)
cal algorithm. This formula was developed using the theory
of generalized functions [23] and gives a null (zero) field where
inside the Kirchhoff surface.

For a nondeforming Kirchhoff surface that is in rectilin-
ear motion, the Kirchhoff formula for the acoustic pressure

re 5

2(x1 2 y1)My 1 ! (x1 2 y1)2 1 (1 2 M 2
y)

3[(x2 2 y2)2 1 (x3 2 y3)2]
1 2 M 2

y

, (28)p9 at the observer location x and observer time t takes
the form

where x1 is the observer distance vector component which
is aligned with the free stream My vector and x2 and x34fp9(x, t) 5 EE

S
F E1

r(1 2 Mr)
1

p9E2

r2(1 2 Mr)
G

t*
dS, (22)

are the transverse components. The components of the
element position vector y are defined similarly and denoted

where by y1 , y2 , and y3 .
The integrations are performed assuming that the inte-

grand in Eq. (22) is constant over a Kirchhoff surfacer 5 uru, r 5 x 2 y(t), Mr 5 M · r/r, (23)
element, and the time is discretized in the same manner

E1 5 2n̂ · =p9 1 (M · n̂)(M · =p9)

(24)

as in the flow solver. Thus for the discrete acoustic pressure
at the observer point and time we can write

1 Fcos u 2 M · n̂
cy(1 2 Mr)

2
M · n̂

cy
G p9

t
,

(25)
p9[x, n Dt] 5

1
4f O

NE

e51
Pe[(n 2 int(Re/cy )) Dt] DSe , (29)

E2 5
1 2 M 2

(1 2 Mr)2 (cos u 2 M · n̂)

where n shows the time level, the subscript e indicates the
in which y is the surface point coordinates, t is the source (e)th surface element, NE is the total number elements on
time, M is the Mach number vector at which the surface the discretized Kirchhoff surface, the operator int( ) rounds
travels, n̂ is the normal vector pointing out of the control the real argument to the closest integer, and the summation
(Kirchhoff) surface, cy is the free stream speed of sound, is the discretized version of the right-hand side of Eq. (22),
and u is the angle between the vectors r and n̂. The inte- which corresponds to the integral. This equation requires
grand of the above equation is to be evaluated at the the past time history of the integrand for each surface
control point emission time, t*, which is given by the root of element, which usually implies a very large memory re-

quirement. Here this problem is overcome by using a re-
cursive summation approach.t 2 t 1 r(t)/cy 5 0. (26)
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4. RESULTS AND DISCUSSION

The capability of the numerical algorithm is demon-
strated in this section. Several test cases are presented
to evaluate various components of the code. The studies
include an oscillating flat plate in a viscous fluid, acoustic
scattering from a sphere, sound radiation from a baffled
circular piston, steady state flow through an engine inlet,
and sound propagation through an engine inlet.

FIG. 4. Recursive Kirchhoff integration.

4.1. Oscillating Flat Plate in a Viscous Fluid

The time accurate Navier–Stokes algorithm has beenEach surface element e at time t of the Navier–Stokes/
tested for Stokes’ second problem, in which a flat plate inEuler numerical solver will contribute to the total acoustic
a viscous fluid oscillates in its own plane with a constantpressure at the observer location a time period of re/cy frequency. An analytical solution is available in the caselater. In other words, a signal of element e produced at
of an incompressible fluid. The motion of the plate is de-time t will arrive at the observer at t 1 re/cy . Thus for the
fined as u 5 U cos(2f ft). The amplitude of the oscillationdiscretized acoustic pressure at the observer we can write
is given by U/cy 5 0.3, the Reynolds number is 10,000 and
the oscillation frequency is f 5 100 Hz. Figure 5 compares

p9new[x, (n 1 int(re/cy )) Dt] 5 p9old[x, (n the numerical solution with the exact solution at an instant
of time. The code predicted the velocity profile in the1 int(re/cy )) Dt] (30)
boundary layer very well. However, it has been observed
from the other tests of this problem that, if not carefully1

1
4f

Pe[n Dt] DSe ,
modeled, the amount of artificial dissipation in the bound-
ary layer can affect the solution significantly, taking over
the physical diffusion (viscosity). Anisotropic dissipationwhere e 5 1, 2, ..., NE, and the Kirchhoff integrations are
models are suggested for viscous calculations involvingassumed to start at n 5 nKS , and end at n 5 nKE , and the
solid boundaries [24].initial values of pressure at the observer are set to zero, i.e.,

4.2. Scattering From a Spherep9 [x, (n 1 int(re/cy)) Dt] 5 0,
(31)

In this section we compare the full Euler solution of then # nKS , e 5 1, 2, ..., NE.
current code with the linear analytical solution of Morris
[25] for the scattering of spherical sound waves generatedThen this equation will give a transient field for some
by a spatially distributed Gaussian source from a sphere.time periods after n 5 nKS , and before n 5 nKE . This is
The source used for the Euler computations is a massdue to the fact that we are essentially predicting future
source, with its effects added to the momentum and theacoustic pressure contributions at the observer from each
energy equations. The mass source is given byKirchhoff surface element, which progressively sum up to

the total acoustic pressure at the observer. The Kirch-
hoff results are then usable only in the range nKS 1
Dnarr # n # nKE 2 Dnarr , where Dnarr 5 int(r/cy )max 2
int(r/cy )min .

The integration is schematically shown in Fig. 4, where
the pressure contributions of the surface elements are
shown to be scattered in a 2D matrix box, according to
the number of time steps (int(re/cy ), vertical axis of the
box) for an element’s signal (horizontal axis of the box)
to arrive at the observer. The pressure contribution of each
element is shown by p(n)

e , signifying the signal of value p
is emitted from the (e)th element at the nth time step.
Then Eq. (30) corresponds to recursive summation of the
full locations of the rows of the matrix boxes that are
shifted in vertical direction (time step axis) by one step FIG. 5. Oscillating flat plate in viscous fluid: velocity profile at an

instant of time, U/cy 5 0.3, Re 5 104, f 5 100 Hz.from one time step to the next.
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FIG. 6. Comparison of the normalized RMS of the total acoustic
pressures along the x-axis (singular line of the grid). FIG. 8. Configuration of the oscillating baffled piston problem.

m
.

5 ry exp[24 log 2((x 1 2.56)2

(32) the exact solution, indicating the effectiveness of the hybrid
method in acoustic calculations.1 y 2 1 z 2 )] cos(2f ft),

4.3. Oscillating Baffled Pistonwith the source frequency f 5 212.6 Hz. The sphere radius
R is 1 m, and a 192 3 192 grid (axisymmetric) is used, with The next example is an oscillating circular piston in a
a far-field boundary at 5.5 R from the center of the sphere. wall with an axial velocity of u 5 1024 cy sin((fcy/5 Dx)t).
Figure 6 compares the numerical and exact solutions for This problem is one of the test problems of the ICASE/
the root mean square of the total acoustic pressure along LaRC Workshop on Benchmark Problems in Aeroacous-
the x-axis (singular line) on which the center of the source tics [26]. The problem is solved on a 100 Dx 3 100 Dx grid
is located. The sphere lies between x 5 21 m and x 5 in cylindrical coordinates in the axisymmetric mode as
11 m. The agreement between the two solutions is excel- shown in Fig. 8.
lent, which is also evident from Fig. 7. This figure compares The radius of the piston is 10 Dx. The above frequency
the direct Euler solution, the Kirchhoff prediction using the of the piston oscillation corresponds to having 10 cells per
direct Euler solution, and the exact solution at a distance of wavelength. The full Euler equations were solved together
4.5 R from the center of the sphere. The Kirchhoff surface with the radiation conditions on the outer boundaries. Fig-
was chosen to be a spherical shell located at a distance of ure 9 compares the acoustic pressure contours of the nu-
approximately 3R from the center. The direct CFD data merical simulation with the exact solution. The pressure
starts deviating slightly toward 1808 from the exact solution levels seen in the figure were scaled by the spherical dis-
due to possible dissipation and dispersion errors, but the tance from the center of the piston to suppress the spherical
Kirchhoff prediction does not show any deviation from spreading effect. The far-field boundary conditions worked

very well against continuous acoustic radiation from the
piston. The overall agreement between the current solution
and the exact is excellent.

4.4. Engine Inlet Flow

The ultimate goal of the current research is radiation
problems from ducted fans of gas turbine engines, where
one has nonuniform mean flow and rotating and propagat-
ing pressure patterns in an acoustically treated inlet. For
the inlet radiation problem one has to first determine the
mean (steady) flow through the inlet and then determine
the unsteady field driven by the acoustic source at the fan.
The acoustic field is given by the difference between the
unsteady and steady fields. The code has been tested for
steady flow through the General Electric engine inlet C1AFIG. 7. Comparison of the current and exact solutions for the scatter-

ing directivity at 4.5 R distance from the sphere center. at cruise and off-design conditions. A meridional section
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FIG. 10. A meridional view of the C-O grid about the G.E. C1A
engine inlet.

Figure 11 presents the Mach number contours for the
cruise condition, for which the free stream Mach number
M is 0.82, the mass flow ratio MFR is 0.65, and the angle
of attack a is 4.08. The mass flow ratio is defined as the
ratio of the amount of mass flux going through the inlet
to the mass flux that would go through a hi-lite (inlet lip
leading edge location) cross section equivalent area at the
free stream conditions. Notice that the contour lines are
very smooth in the vicinity of the centerline and the cen-
terbody nose, where there exist grid singularities. This
smooth solution was achieved by cancelling the mass-

FIG. 9. Sound radiation from oscillating piston: Exact (top) and Euler
(bottom) solutions.

of the C-O grid system (total of 64,000 cells) used for the
calculations is shown in Fig. 10. The geometry is symmetric
about the vertical plane, and the 3D grid was generated
for only one-half of the inlet using an elliptic mesh genera-
tor. The Euler equations, together with nonreflecting
boundary conditions, were solved using the Cartesian for-
mulations. Local time stepping was used and symmetry
boundary conditions were applied in the symmetry plane.
For this problem the pressure at the fan was adjusted
according to the mass flow rate that was computed at every
iteration, which was started by specifying, at the fan, a
constant pressure, obtained by using the 1D ideal gas dy-
namics relations for the given mass flow rate. The other
variables were obtained by solving the interior equations.
The iterations were stopped after a reasonably accurate
mass flow at the fan was reached. This procedure is identi- FIG. 11. Mach contours around the G.E. C1A inlet, M 5 0.82,

MFR 5 0.65, a 5 4.08.cal to that of Uenishi et al. [11].
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field at M 5 0.204 first and then applying at the fan an
acoustic source [6] of the combined (0, 0) and (0, 1) modes
with a 1808 phase difference, each with a 300 N/m2 ampli-
tude and at a blade passing frequency (BPF) of 5 kHz.
The mass flow rate for this case is 15 kg/s. The grid (384 3
96 3 1) used for the calculations is shown in Fig. 13, which
is relatively coarse near the outer boundaries. This grid
was generated using conformal mapping [28, 16].

The Euler equations and nonreflecting boundary condi-
tions in cylindrical coordinates were used for the calcula-
tions presented in this section. The steady state solution
was carried out using a multigrid convergence acceleration
procedure that retains the fourth-order spatial accuracy
[16]. Also the 1D characteristic boundary conditions of
Giles [29] were used at the fan to achieve an accurate

FIG. 12. Ideal Mach number distribution on the C1A cowl at the
mass flow through the inlet, as well as to prevent possiblecrown cut, M 5 0.65, MFR 5 0.351, a 5 4.08.
reflections from the fan-face. The corresponding steady
state pressure contours are shown in Fig. 14.

Once the steady state was reached, the source was turned
source-like terms which are associated with the nonvan- on and the calculations were continued. The acoustic pres-
ishing discretized divergence of the metric vectors. sure contours, illustrated in Fig. 15, were obtained by sub-

Figure 12 gives the ideal Mach number distribution, tracting the steady state pressure from the pressure of the
which is computed using the local pressure with the 1D time accurate calculations. It is evident from both Figs. 14
ideal gas dynamics relations, on the engine cowl at the and 15 that the steady and the acoustic pressure contours
crown cut for the off-design condition, M 5 0.65, MFR 5 are extremely smooth in the vicinity of the centerline,
0.351, a 5 4.08. This condition and the above correspond showing that the centerline treatment of the current algo-
to those of Uenishi et al. [11]. Qualitative agreement for the rithm is effective.
off-design conditions between their result and the current As the waves travel upstream cancelations and reinforce-
result is very good as shown in Fig. 12. ments occur due to phase changes. This can be seen in

detail in the centerline pressure plot (Fig. 16), where the
4.5. Propagation Through Inlet steady state and a snapshot of the time accurate pressures

are shown together.In this section we demonstrate an example sound propa-
gation problem through an axisymmetric inlet, JT15D [27]. As well as the spherical spreading effects, large cells near

theupstream far-fieldboundaries playa role in thediminish-This example includes the calculation of a steady state flow

FIG. 13. Grid around the JT15D inlet.
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FIG. 14. Steady state pressure contours around the JT15D inlet, My 5 0.204, a 5 08, Mass Flow Rate 5 15 kg/s.

ing of the pressure amplitude, since large cells cannot sup- On a time-shared 256-node CM-5 the code uses about a
total of 3.26 es per grid point per time step when theport the higher wave frequencies. This is in fact the main
Euler equations are integrated together with nonreflectingmotivation for using a far-field extrapolation technique,
boundary conditions on the far-field boundaries and thesuch as the Kirchhoff method, taking the near-field solution,
Kirchhoff calculations are performed to extrapolate theto accurately predict the far-field noise. Further validation
near-field solution to the far-field. The computational meshstudies involving engine inlet noise calculations using the
used in the timing of the code was only one of 13 periodicKirchhoff method are reported elsewhere [6].
domains in the circumferential direction, and one domain
involved 256 3 32 3 16 grid points, from which two Kirch-4.6. Performance
hoff surfaces were constructed. Since Kirchhoff integra-
tions are performed on a closed surface, each KirchhoffThe performance characteristics of the current code are

documented in Table I for various segments of the code. surface was extended to cover these 13 periodic domains,

FIG. 15. Propagation of (0, 0) 1 (0, 1) modes (plane waves) through the JT15D inlet. BPF 5 5 kHz, My 5 0.204, a 5 08, Mass Flow Rate 5

15 kg/s.
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uses about 2.43 es per grid point per time step on a 256-
node time-shared CM-5 for Euler calculations and about
3.26 es and 450 M Bytes of memory for Euler calculations
with Kirchhoff integrations. The use of the MERGE com-
mand has provided significant CPU savings in computing
the residuals of the governing equations. The use of this
intrinsic statement is suggested in similar CFD algorithms
for efficient coding in HPF.

It has been found that, on meshes having singular lines,
such as the centerline of an engine inlet, formulating the
governing equations in cylindrical coordinates and using

FIG. 16. The steady and the time accurate pressures along the center- cell-centered finite differencing permits proper treatmentline of the JT15D inlet. BPF 5 5 kHz, My 5 0.204, a 5 08, Mass Flow
of the grid singularity. This is extremely crucial for success-Rate 5 15 kg/s.
ful aeroacoustic simulations of the turbofan engine inlets.

It has been demonstrated with various results that the
algorithms are capable of calculating both steady and un-

then involving a total of 13 3 (32 3 16) surface elements to steady (acoustics) problems.
integrate the acoustic field on them to 12 far-field observer
points. The total memory usage was 450 M Bytes.

The majority of the CPU time was spent on calculating APPENDIX
the residuals of the governing equations (25.2%) and on
the Kirchhoff calculations (25.4%). The optimization tech- In this section the terms E, F, G, SB , and SC of the far-
niques described in Section 2.4 provided approximately field nonreflecting boundary conditions, Eq. (1), are given
60% reductions in computing the residuals of the governing with a choice of the Cartesian or the cylindrical coordinate
equations, and the procedure described in Section 2.5 ap- systems for arbitrary 3D subsonic flow problems, with the
proximately 50% in computing the artificial dissipation. angle of attack a, being measured as the angle between

the free stream vector and its projection on the x–z plane
5. CONCLUSIONS in the Cartesian system, and the yaw angle c, being mea-

sured as the angle between the x-axis and the projection
An efficient, hybrid, computational aeroacoustics algo- of the free stream vector on the x–z plane. Any quantity

rithm has been described. It solves the 3D Navier–Stokes/ with the subscript y indicates the undisturbed value (free
Euler equations on a body-fitted coordinate system using stream). Any dependent perturbation variable q 9 is the
temporally and spatially fourth-order accurate, Runge– difference between the total q and the undisturbed q, i.e.,
Kutta time integration and cell-centered finite difference q 9 5 q 2 qy :
schemes. The algorithm has been developed for aeroacous-
tics applications on parallel processors and coupled with For Cartesian coordinates,
a Kirchhoff method for far-field predictions. Several opti-
mization techniques have been introduced in this develop-
ment, which yielded a very efficient algorithm. The code m 5 0, (x1 , x2 , x3 ) 5 (x, y, z),

(u1 , u2 , u3 ) 5 (u, v, w);

TABLE I For cylindrical coordinates,
Breakdown of CPU Time Spent on Various Segments of the

Code for a 256 3 32 3 16 Grid with 13 Periodic Kirchhoff Surfaces
(256 Node CM-5 in Time-Sharing Mode) m 5 1, (x1 , x2 , x3 ) 5 (x, r, u),

(u1 , u2 , u3 ) 5 (u, vr , wu ).Work CPU, e s/step 2 cell Percentage

Inv. fluxes 0.82 25.2
Dissipation 0.17 5.2 Radiation Boundary Conditions
Wall BCs 0.46 14.1
Ghost cells 0.53 16.3 Qrad 5 [r9, u91 , u92 , u93 , p9 ]T,
Kirchhoff 0.83 25.4
Other 0.45 13.8 Erad 5 ĉ1Qrad , Frad 5 ĉ2Qrad ,
Total 3.26 100.0

Grad 5 ĉ3Qrad , SB,rad 5 ĉ4Qrad ,
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c 5 yaw angle,

x, y, z 5 Cartesian coordinates,

(x, y, z)ref 5 reference pointSC,rad 5

ĉ2r9

ĉ2u 91

ĉ2u 92 2 ĉ3u93

ĉ2u93 1 ĉ3u92

ĉ2 p9

,

(Approximate Source Location).

Outflow Boundary Conditions

5 6
Qout 5 Qradwhere

uy1(r9 2 p9/c2
y)ĉ1 5 c̃1 ,

uy1u91 1 p9/ryĉ2 5 c̃2 cos mx3 1 c̃3 sin mx3 ,

Eout 5 uy1u92 ,ĉ3 5 c̃3 cos mx3 2 c̃2 sin mx3 ,

uy1u93
ĉ4 5 x m

2 c̃4 2 x m
2 Fĉ1

x1
1

ĉ2

x2
1

1
x m

2

ĉ3

x3
1

m
x m

2
ĉ2G ,

ĉ1p9

5 6
uy2(r9 2 p9/c2

y)in which

uy2u91

c̃4 5 c94 , Fout 5 uy2u92 1 p9/ry

uy2u93

ĉ2p9

5 6
5

c̃1

c̃2

c̃3

65 V 5
c91

c92

c93
6 ,

uy3(r9 2 p9/c2
y)

uy3u91)

with Gout 5 uy3u9y ,

uy3u93 1 p9/ry

ĉ3p9

5 6
V 5 3

cos a cos c 2sin a cos c 2sin c

sin a cos a 0

cos a sin c 2sin a sin c cos c
4 ,

2
xm

2

c2
y

p9

t
0

c91 5
x9

d9A9
, c92 5

y9

d9A9
, c93 5

z9

d9A9
,

SB,out 5 0 ,

0c94 5
1

d9A9
, d92 5

x92

1 2 M 2
y

1 y92 1 z92,
ĉ4p9

5 6
A9 5

1
cyÏ1 2 M 2

y
S1 2

x9

d9

My

Ï1 2 M 2
y
D, uy2(r9 2 p9/c2

y)

uy2u91

SC,out 5 uy2u92 2 uy3u93 ,5
x9

y9

z9
65 V21 5

x 2 xref

y 2 yref

z 2 zref
6 , uy2u93 1 uy3u92

ĉ2p9

5 6
wherea 5 angle of attack,
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9. CM Fortran Language Reference Manual, Version 2.1, (Thinking Ma-uy1 5 uy ,
chines Corporation, Cambridge, MA, January 1994).

uy2 5 vy cos mx3 1 wy sin mx3 , 10. C. H. Koelbel, D. B. Loveman, and R. S. Schreiber, The High Perfor-
mance Fortran Handbook (MIT Press, Cambridge, MA, 1994).

uy3 5 wy cos mx3 2 vy sin mx3 ,
11. K. Uenishi, M. S. Pearson, T. R. Lehnig, and R. M. Leon, J. Propulsion

Power 8, 175 (1992).uy 5 uVyu cos a cos c,
12. F. Farassat and M. K. Myers, J. Sound Vibration 123, 451 (1988).

vy 5 uVyu sin a, 13. M. Vinokur, J. Comput. Phys. 14, 105 (1974).

14. F. G. Hu, M. Y. Hussaini, and J. Manthey, NASA Contractor Reportwy 5 uVyu cos a sin c,
195022, 1994 (unpublished).

uVyu 5 Mycy , 15. Y. Özyörük and L. N. Long, ‘‘Computational Aeroacoustics on Mas-
sively Parallel Computers,’’ in ICASE/LaRC Workshop on Bench-

M 5 Mach number, c 5 speed of sound. mark Problems in Computational Aeroacoustics (CAA), edited by
J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA CP-3300,
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